Optimization Challenges in Energy Systems

Victor M. Zavala

Assistant Computational Mathematician
Mathematics and Computer Science Division
Argonne National Laboratory

vzavala@mcs.anl.gov

M.Anitescu, E.Constantinescu, S.Leyffer, C. Petra, A. Kannan

US-Mexico Workshop on Optimization and its Applications January 3rd, 2011

Outline

Challenges in Optimization from Energy Perspective

1. Motivation

Next-Generation Power Grid Decision-Making Hierarchy Who? Domains? Frequency?

2. Optimization Issues

Models and Complexity – LP/QP, NLP, MPEC, MI(N)LP Uncertainty Quantification - Data Assimilation and Machine Learning Dynamics and Decentralization -Gaming-

3. Conclusions

 $\sim 70\%$ Electricity from Coal – CO $_2$ Emissions Limited Market Control – Demands are Inelastic, No Storage $\sim 20\%$ Energy Losses - Transmission, Demand Shedding, and Wind Curtailment

Major Adoption of Renewables -30%-

Elastic Demands, Distributed Generation and Storage, Real-Time Pricing All Players use Optimization – How to Coordinate Time-Scales?

Decision Making Structure and Optimization Tasks

Transmission/Generation Expansion: ISO, Yearly, MILP

Planning

Unit Commitment: ISO, Daily, DC Flow, MILP

Day-Ahead Bidding: GENCOs/Utilities, Daily, LP/QP

Economic Dispatch: ISO, 5 Minutes, DC Flow, LP/QP

Real-Time Bidding: GENCOs/Utilities, 5 Minutes, LP/QP

Markets

AC Power Flow: ISO, 1-2 Minutes, NLP

State Estimation: ISO, 1-2 Minutes, QP/NLP

Generation Control: GENCOs, Seconds, QP/NLP

Voltage and Dynamic Stability: ISO, MilliSeconds, No Optimization

Energy Management: Utilities/Consumers, Seconds/Minutes, LP/QP/NLP

Control

Dynamic & Uncertain Forcing Factors - Weather- Drive Markets

Supply (Wind) and Elastic Demands Vary at <u>Higher Frequencies</u>

Anticipating Forcing Factors is Critical -Minimize Reserves- Longer Foresight Horizons and Faster Updates Needed

Interconnect Level Transactions - Key for High Efficiency and Lower Prices

- Hydro, Wind, Geothermal, Solar, Eastern Demands

Transmission Network Expansion - Need Infrastructure to Enable Exchanges

2.	O	ptin	nization	Issues
		-		

A Canonical Model

Transmission/Generation Expansion

Horizons of 10 to 20yr – MILP with O(104) Integers & O(108) Continuous – Memory Constraints

Day-Ahead and Real-Time Market Clearing

Horizons of 1 to 36hr – MILP with O(10³) Integers & O(10⁶) Continuous – Time Constraints

$$\min \sum_{k \in \mathcal{T}} \sum_{j \in \mathcal{G}} c_j \cdot G_{k,j} \cdot \mathbf{y}_{k,j}^G + c_j^\uparrow \cdot (\mathbf{y}_{k+1,j}^G - \mathbf{y}_{k,j}^G) + c_j^\downarrow \cdot (\mathbf{y}_{k,j}^G - \mathbf{y}_{k+1,j}^G) + \sum_{j \in \mathcal{L}} c_j^L \cdot (\mathbf{y}_{k+1,j}^L - \mathbf{y}_{k,j}^L)$$

s.t. $G_{k+1,j} = G_{k,j} + \Delta G_{k,j}, \ k \in \mathcal{T}, j \in \mathcal{G}$ Dynamics -Ramps-

Cost Function

$$\sum_{(i,j)\in\mathcal{L}_j} P_{k,i,j} + \sum_{i\in\mathcal{G}_j} G_{k,i} = \sum_{i\in\mathcal{D}_j} D_{k,i}, \ k \in \mathcal{T}, j \in \mathcal{B}$$
$$|P_{k,i,j} - b_{i,j}(\theta_{k,i} - \theta_{k,j})| \leq \mathbf{M}_{i,j} \cdot \mathbf{y}_{k,i,j}^{L}, k \in \mathcal{T}, (i,j) \in \mathcal{L}$$

$$0 \le G_{k,j} \le G_j^{max} \cdot \mathbf{y}_{k,j}^G, \ k \in \mathcal{T}, j \in \mathcal{G}$$
 Network

$$|\Delta G_{k,j}| \leq \Delta G_j^{max} \cdot y_{k,j}^G, k \in \mathcal{T}, j \in \mathcal{G}$$

$$|P_{k,i,j}| \leq P_{i,j}^{max} \cdot \mathbf{y}_{k,i,j}^{L}, k \in \mathcal{T}, (i,j) \in \mathcal{L}$$

$$|\theta_{k,j}| \leq \theta_j^{max}, k \in \mathcal{T}, j \in \mathcal{B}$$

$$\sum_{\ell=k}^{k+UT-1} \mathbf{y}_{\ell,j}^G \ge UT\left(\mathbf{y}_{k+1,j}^G - \mathbf{y}_{k,j}^G\right), \ k \in \mathcal{T}, j \in \mathcal{G}$$

$$\sum_{\ell=k}^{k+DT-1} (1 - \mathbf{y}_{\ell,j}^G) \ge DT \left(\mathbf{y}_{k,j}^G - \mathbf{y}_{k+1,j}^G \right), \ k \in \mathcal{T}, j \in \mathcal{G}$$

Key Extensions: Stochastic, AC Power Flow (MINLP), Gaming, Contigency

Economic Dispatch

Real-Time Market Clearing

Sets Locational Marginal Prices (LMPs) in Interconnect Solved Every 5 Minutes, 15 Minutes Foresight Large-Scale LP/QP - O(10⁵-10⁶) Continuous, <u>Core</u> of Unit Commitment

$$\begin{aligned} &\min \ \sum_{k=\ell}^{\ell+N} \sum_{j \in \mathcal{G}} c_j \cdot G_{k,j} \\ &\text{s.t.} \ G_{k+1,j} = G_{k,j} + \Delta G_{k,j}, \ k \in \mathcal{T}, j \in \mathcal{G} \\ &\sum_{(i,j) \in \mathcal{L}_j} P_{k,i,j} + \sum_{i \in \mathcal{G}_j} G_{k,i} = \sum_{i \in \mathcal{D}_j} D_{k,i}, \ k \in \mathcal{T}, j \in \mathcal{B} \\ &P_{k,i,j} = b_{i,j} (\theta_{k,i} - \theta_{k,j}), k \in \mathcal{T}, (i,j) \in \mathcal{L} \\ &0 \leq G_{k,j} \leq G_j^{max}, \ k \in \mathcal{T}, j \in \mathcal{G} \\ &0 \leq \Delta G_{k,j} \leq \Delta G_j^{max}, \ k \in \mathcal{T}, j \in \mathcal{G} \\ &|P_{k,i,j}| \leq P_{i,j}^{max}, \ k \in \mathcal{T}, (i,j) \in \mathcal{L} \\ &|\theta_{k,j}| \leq \theta_j^{max}, \ k \in \mathcal{T}, j \in \mathcal{B} \end{aligned}$$

Benchmark System – Illinois - 1900 Buses, 2538 Lines, 870 Loads, and 261 Generators Daily Generation Cost ~ \$O(108)

Economic Dispatch

Effect of Foresight on Costs

<u>Potential Savings</u> of \$O(10⁸)/Yr – Increase with Wind/Demand Variability Savings Constrained by Time Resolution -Desired 5 min-

Economic Dispatch

Computational Performance – Linear Algebra and Warm-Starts

IPOPT- Symmetric KKT Matrix (MA57) VS. CPLEX-Simplex – Basis Factorization/Updates

Warm-Start Strategy - Construct <u>Basis</u> for Simplex -In Advance, With Forecast-Largest Problem Solvable in 5 Minutes - 20 Hr Foresight, <u>240 Steps</u>, 5 Min/Step, <u>1x10⁶ Variables</u>

Stochastic Economic Dispatch

Uncertainty Handled Through <u>Reserves</u> -Currently 10% of Demand-Conservative & Expensive Stochastic Optimization Can Make Reserves Adaptive - e.g., Day-Night Wind/Demands

Main Bottlenecks: Number of 1st Stage Variables, Scenarios, Block Size

Stochastic Economic Dispatch

PIPS, IPOPT, OOPS:

Barrier, Coarse Linear Algebra Decomposition, Distributed Memory PIPS: OOQP Gertz & Wright, Schur Complement-Based, Dynamic Load Balancing

- Bottlenecks and Latency of Forming and Factorizing Schur Complement Avoided with Iterative Solver and Stochastic Preconditioner Petra & Anitescu, 2010a
- Problem with O(10⁷) Variables (No Network) <u>600</u> Times Faster Than Serial on 1,000 cores
- Strong Scaling on 2,000 cores with O(10⁸) Total Variables and O(10⁵) First-Stage Variables
 ScaLAPACK Petra & Anitescu, 2010b
- However, Speed-ups not Enough for Use in MILP
- Key Questions:
 - Fine-Grained Parallelism-Network, Multi-Core, BlueGene-
 - Is Probability Distribution Correct?
 - What if Scenario Generation is Expensive?

Uncertainty Quantification

Major Advances in Meteorological Models (WRF)

Highly Detailed Phenomena - PDEs High Complexity 4-D Fields (10⁶- 10⁸ State Variables)

Model Reconciled to Measurements From Meteo Stations

Data Assimilation Every 6-12 hours:

Optimization Based: 3-D Var Courtier, et.al. 1998, 4-D Var Navon et.al., 2007

Simulation Based: Ensemble Kalman Filter Eversen, et.al. 1998

http://www.meteomedia.com/

Is WRF Computationally Practical Enough for Market Operations?

Uncertainty Quantification

Forming Covariance Matrix is <u>Impractical</u> -Size of State Space- Constantinescu, et.al. 2009

- 1) Use Only Most Relevant States (Adjoint Analysis)
- 2) Propagate Samples through WRF Model

Making WRF Computationally Feasible

Grid-Targeted Resolutions and Computational Resources

45 A0 35 30 25	#	#2	
	–120	−110 −100 −90 ° Longitude W	-80

ID	Size	Grid
#1	130×60	$32\mathrm{km}^2$
#2	126×121	$6\mathrm{km}^2$
#3	202×232	$2\mathrm{km}^2$

CPUs	Wall-time [hr]
4	50
8	28
16	17
32	10

Jazz Cluster at Argonne National Laboratory

- Illinois [2km]: 500 processors
- US [2 km]: ~50,000 processors
- US [1 km]: ~400,000 processors

Uncertainty Quantification

Stochastic Optimization and Uncertainty Q

Key: Probability Distribution and Number of Samples Must be <u>Adapted</u> in Real-Time

Stochastic Optimization and Uncertainty Q

Aggregated Power Profiles - Validation with Real Data-

- WRF Forecasts are -In General- Accurate with Tight Uncertainty Bounds
- Inference Analysis Reveals that 30 WRF Samples are Sufficient Cost ~ \$474,000, Upper Bound σ^2 (1,082 \$2), Lower Bound σ^2 (1,656 \$2)
- <u>Excursions</u> Do Occur: Probability Distribution of 3rd Day is Inaccurate! Higher Frequency <u>Data Assimilation</u> (1 hour)? Missing Physics? 100m <u>Sensors</u>?

Key Area: Real-Time Algorithms for Data Assimilation

Collaborative Project: Argonne-Building IQ "Proactive Energy Management for Building Systems"

Mike Zimmermann, Tom Celinski, Peter Dickinson (BIQ), and Victor M. Zavala (ANL)

~ 50% of U.S. Energy Resources -Gas, Electricity- Go to HVAC

EMS Needs to Forecast & Optimize Demand as a Function of Weather and Market Prices Management of New Technologies (Batteries, PHEVs, Photovoltaic, Demand-Response)

Machine Learning Model

- Real-Time Optimal Control Problem with Machine Learning Model -NLP-Solved Every 10 Minutes, Foresight of 2 Hours
 Building Model Re-Trained Daily
 Machine Learning Key for Large-Scale and Cheap Deployment
- Trade-Off: Comfort vs. Energy Demands vs. CO₂ emissions
- Exploit Sensor Information: Occupant Tracking, Disaggregate Demands

Occupant Tracking, TCS Building at Argonne Skow, Domagala, Cattlet. 2010

Machine Learning

Gaussian Process (GP) Modeling Rasmussen, et.al. 2001

- 1. Input-Output Data Sets: X_j, Y_j
- 2. Covariance Structure: $V(X_j, X_i, \eta) := \eta_0 + \eta_1 \cdot \exp\left(-\frac{1}{\eta_2} ||X_j X_i||^2\right)$
- 3. Apply Maximum Likelihood: $\log p(Y|\eta) = -\frac{1}{2}YV^{-1}(X,X,\eta)Y \frac{1}{2}\log \det(V(X,X,\eta))$
- 4. Posterior Distribution: $\mathbf{Y}^P = \mathbf{V}(\mathbf{X}^P, \mathbf{X}, \eta^*)\mathbf{V}^{-1}(\mathbf{X}, \mathbf{X}, \eta^*)\mathbf{Y}$ Forecast Mean $\mathbf{V}^P = \mathbf{V}(\mathbf{X}^P, \mathbf{X}^P, \eta^*) \mathbf{V}(\mathbf{X}^P, \mathbf{X}, \eta^*)\mathbf{V}^{-1}(\mathbf{X}, \mathbf{X}, \eta^*)\mathbf{V}(\mathbf{X}, \mathbf{X}^P, \eta^*)$ Covariance

Key Challenge: Handling Covariance Matrix -Large, Nonlinear, and Dense-

BuildingIQ EMS Implemented at Argonne's TCS Building Expected Yearly Savings of ~30% on HVAC Energy – \$O(10⁵)

Dynamic Electricity Markets

- GENCOs and Utilities Bid in Day-Ahead and Real-Time Markets
- ISO Clears Markets To Maximize Social Welfare

Generator States are Propagated in Time – Ramps and Foresight Affect Market Stability

Dynamic Electricity Markets

Supply Function-Based Dynamic Game Models Kannan & Z., 2010

- Linear Complementarity Problem: Economic Dispatch (LP) + GENCOs (LP)

$$\max_{\substack{a_i^t,b_i^t,q_i^t\\ a_i^t,b_i^t,q_i^t\\ }} \sum_{t=1}^T \left(\left(\frac{q_i^t + a_i^t}{b_i^t} \right) q_i(t) - C_i(q_i(t)) \right)$$

$$\begin{cases} q_i^t \leq cap_i^t\\ q_i^{t+1} - q_i^t \leq R_i^t\\ q_i^{t+1} - q_i^t \leq R_i^t\\ \frac{q_i^t + a_i^t}{b_i^t} = \frac{c^t + \sum_{i=1}^N a_i^t}{d^t + \sum_{i=1}^N b_i^t} \end{cases}, \forall t = 1, 2, .., T$$

$$\begin{cases} s.t. & q_i^t + a_i^t\\ b_i^t = 0 \end{cases}$$
Players
$$q_i^t \geq 0$$

Effect of Ramp Constraints on Market Equilibrium

Dynamic Electricity Markets

Identifying Non-Gaming Behavior

Some Players -Intentionally or Unintentionally- Bid Suboptimally Introduces Noise in Equilibrium – Can be Inferred from Data

Huge Potential for Dynamic Market Models

- Mechanistic Price Forecasting, Interconnect Level Transactions
- Fundamental -Market Stability- and Algorithmic Questions -Incomplete Gaming-
- Extensions to Integers Needed: Unit Commitment + GENCOs Problems, Interconnects

3. Conclusions

Conclusions

Next-Generation Power Grid

- Higher Frequency Dynamic Forcings
- Market Decentralization
- Huge Savings Emissions, Prices-

Optimization Needs

- Distributed Algorithms for Games (LP/QP,MILP)
- Fast Algorithms for Machine Learning and Data Assimilation
- Capturing Physics in Markets AC Power Flow, NLP, MI(N)LP
- Linear Algebra: Fine-Grained Parallelism, Alternatives to Simplex and Barrier
- Realistic Models and Testing (Closed-Loop) for Benchmarking

Other Areas

- Integration of Electricity, Water, and Natural Gas Markets Shahidehpour, et.al. 2009
- Sensor Design, Placement, and Observability Grid, Buildings -
- Contigency Analysis Pinar, et.al. 2010

Optimization Challenges in Energy Systems

Victor M. Zavala

Assistant Computational Mathematician
Mathematics and Computer Science Division
Argonne National Laboratory

vzavala@mcs.anl.gov

M.Anitescu, E.Constantinescu, S.Leyffer, C. Petra, A. Kannan

US-Mexico Workshop on Optimization and its Applications January 3rd, 2011

Weather, Demands, and Generation Exhibit <u>Complex Spatio-Temporal</u> Correlations

Correlations <u>Must Be</u> Captured For Efficient Forecasting

Inference Analysis

Integration Uncertainty Quantification and Stochastic Optimization

- Forecast Probability Distribution is NOT in Closed-Form
- Generating Each Sample is Expensive: 50-100 Practical

How to Generate More Samples?

- 1) Sample Weights on Hyperplane $\sum_{s \in \mathcal{S}} w_{s,\ell} = 1$ and Compute $p_{s,j,k}^{wind,\ell} = \sum_{s \in \mathcal{S}} w_{s,\ell} \cdot p_{s,j,k}^{wind}$
- 2) Solve Stochastic Problem with M Batches of Realizations

Stochastic Optimization and Uncertainty Q

